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Abstract

When a sphere moves in a viscous fluid down an artificially roughened inclined plane with multiple

roughness scales, its motion can be described as four successive stages: (i) descending toward the plane

while in contact with a large asperity, (ii) descending toward the plane without contact, (iii) contacting the

plane on small asperities, and (iv) ascending from the plane while in contact with a second large asperity.

This process was analyzed by theory and experiment to provide the time variation of the translational and
rotational velocities of the sphere and of its hydrodynamic separation from the plane. The translational

velocity decreases weakly as the sphere descends toward the plane without contact, while the rotational

velocity is nearly constant. When contact occurs, the translational velocity generally decreases, while the

rotational velocity generally increases, due to solid–solid friction. For large angles of inclination of the

plane from horizontal, or when the larger asperities are closely spaced or have large heights, then contact

with the small asperities does not occur and the motion is dominated by contact with the large asperities

and by no contact.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Interactions between particles and surfaces in a viscous fluid are of great interest in industry
and academia, particularly due to their applications in composite materials processing, suspension
flow, wet granular flow, and modern biotechnology (e.g., Hammer and Apte, 1992; Alon et al.,
1995; Kuo et al., 1997). The critical study of sphere–plane interactions in viscous fluids includes
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the early work of Reynolds (1886), in which he predicted that two approaching smooth surfaces
never physically contact under the action of finite applied forces, due to the lubrication resistance
of the intervening fluid. However, this prediction has been recently questioned from both ex-
perimental and theoretical viewpoints.

Arp and Mason (1977) observed that, with the existence of small surface roughness, two
particles close together in a shearing slow rotated as a pair when in contact, and then separated,
which broke the closed orbits predicted for smooth particles at low Reynolds number. Parsi and
Gadala-Maria (1987) found that the pair-distribution function for sheared suspensions have
different values on the approaching and receding sides of a reference sphere, in violation of the
principle of reversibility for creeping flow of smooth spheres. Rampall et al. (1997) made direct
measurements of the pair-distribution function in simple shear flow of dilute suspensions and
found a depletion of bound pairs in the plane of shear and asymmetry in the fore and aft regions
of the two-particle interactions; these observations were shown to be consistent with a simple
model which includes the effects of particle surface roughness and irreversible contacts. Fur-
thermore, in the experiments of Tabatabaian and Cox (1991), particle contacts broke the sym-
metry of the relative trajectory of two spheres in shear flow. In similar experiments for a pair of
spheres interacting due to gravitational motion, Zeng et al. (1996) and Zhao and Davis (2002)
found that the relative trajectory is affected by the size of the asperities on the sphere surfaces and
the coefficient of solid–solid friction and that surface roughness and solid–solid contacts cause the
symmetry predicted for smooth spheres to be broken. Surface roughness and solid–solid contacts
have also been shown to affect elastohydrodynamic collisions and rebound; when a sphere was
dropped onto a wetted surface, the rebound height of the sphere significantly increased when the
surface was first roughened, due to a decrease in lubrication resistance (Barnocky and Davis,
1988).

The above experimental results show that the existence of microscopic surface roughness makes
possible solid–solid contact in a viscous fluid. A compressive but not tensile force is expected
between the two opposing surfaces that prevents closer approach when the surfaces are pushed
together and contact occurs, but it loses function when they are pulled apart. In related theoretical
work, Davis (1992) showed that the contact force breaks the symmetry of the trajectories of two
unequal spheres interacting in sedimentation, which leads to hydrodynamic diffusion in a dilute
suspension. Similarly, da Cunha and Hinch (1996) predicted hydrodynamic diffusion coefficients
for dilute suspensions of rough spheres subjected to shear flow. More recently, Wilson and Davis
(2000, 2002) showed that microscopic surface roughness modifies the effective viscosity of sus-
pensions and causes normal stress differences which are absent for suspensions of smooth spheres.

As a particular case, the motion of sphere moving down an inclined plane in a viscous fluid
offers researchers a convenient tool to interpret the nature of solid–solid interactions in fluids.
Goldman et al. (1967) studied theoretically the motion of a smooth, non-colloidal sphere moving
parallel to a smooth planar surface in viscous fluid and developed hydrodynamic resistance
functions for small separations. Smart et al. (1993) extended the theory of Goldman et al. (1967)
to microscopically rough surfaces and proposed that contact occurred when the minimum sep-
aration distance between the nominal surfaces decreased to the height of the roughness elements
on the surfaces. They performed experiments to measure the average translational and rotational
velocities of microscopically rough spheres moving due to gravity down an inclined plane and
obtained good agreement with their theory, which includes both hydrodynamic forces and a
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contact-friction force. In particular, the spheres rolled without slipping for small angles of in-
clination of the plane from horizontal, whereas slipping occurred above a critical angle where the
maximum friction was reached. Prokunin (1998, 1999) also measured the translational and ro-
tational velocities of various spheres moving down an inclined plane in a viscous fluid; at high
angles of inclination, he found the measurements to be consistent with hydrodynamic theory
applied at an apparent separation significantly larger than the average surface roughness mea-
sured by profilometry. A possible explanation is that there are multiple roughness scales and that
the sphere is lifted away from the plane by the larger roughness elements but descends only slowly
back toward the plane when the angle of inclination of the plane from horizontal is large (King
and Leighton, 1997; Galvin et al., 2001).

Galvin et al. (2001) extended the theory of Smart et al. (1993) for the motion of a sphere down
an inclined plane by assuming that the sphere has two roughness scales: small bumps with suf-
ficient surface coverage to maintain a minimum separation between the nominal surfaces and
larger bumps which are more sparsely distributed. From both theory and experiments, they
showed that the average separation between the nominal surfaces of the plane and the sphere
increases with increasing inclination of the plane from horizontal. In the present work, we further
examine sphere–plane interactions by using a well-defined surface roughness pattern on the plane.
The instantaneous separation and the translational and rotational velocities of the sphere are
measured as functions of position or time as the sphere moves down the plane. Considerable
variation in these quantities is expected when multiple roughness heights are presented, due to the
dependence of the hydrodynamic resistance functions on the sphere–plane separation and due to
the variation in the contact force and torques as the sphere moves over a roughness element. In
the next section, the theory of Galvin et al. (2001) is modified so that the larger roughness ele-
ments are on the plane rather than the sphere. The theory is then compared with experiments
using Teflon spheres moving down patterned acrylic surfaces in a viscous fluid.

2. Theoretical development

Consider a smooth sphere of radius a and density qs moving down an inclined plane in a
viscous fluid of viscosity l and density q at low Reynolds number. The plane has microscopic
surface roughness with two characteristic roughness heights: dL and dS, with the sparse large
roughness heights separated by a distance L in the direction of motion (see Fig. 1). As the sphere
travels down the plane, it undergoes a varying motion with the following stages:

(i) descending motion toward the plane while in contact with a large asperity,
(ii) descending motion toward the plane without contact,
(iii) motion in contact with small asperities at constant separation, and
(iv) ascending motion from the plane in contact with a second large asperity.

These four stages are considered successively in the following subsections. Since inertia is
negligible at small Reynolds number, there are no significant transients between the successive
stages. Statistical information on the sphere�s motion and nominal separation from the plane can
be obtained by considering many sequences of these four stages, with distributions of dL, dS and L.
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2.1. Descending motion in contact with a large asperity

At t ¼ 0, we consider the sphere to be located directly atop a large asperity (i.e., a ¼ 0, x ¼ 0,
d ¼ dL). If the sphere is to remain in contact with the large asperity as it translates and rotates
down the plane, then it necessarily must descend toward the plane. Simple geometric constraints
require that

cos a ¼ 1� ðdL � dÞ=a; sin a ¼ x=a; ð1Þ

where a is the angle between the normal to the plane and the line connecting the center of the
sphere and the contact point (see Fig. 1). As the sphere descends toward the plane, its motion is
resisted by a viscous lubrication force in the direction normal to the plane (Reynolds, 1886):

FL ¼ � 6pla2

d
dd
dt

¼ 6pla2

d
u tan a; ð2Þ

where the second equality follows from (1), with u ¼ dx=dt as the translational velocity of the
sphere down the plane.

The normal force balance on the sphere is

W cos h ¼ Fn cos a þ Ff sin a þ 6pla2u
d

tan a; ð3Þ

where W ¼ 4pa3ðqS � qÞg=3 is the net weight of the sphere in the fluid, g is the gravitational
constant, Fn is the normal component of the contact force, and Ff is the frictional force. The
tangential force balance on the sphere in the direction down the plane is

W sin h ¼ 6plaðubFFt þ axbFFrÞ þ Ff cos a � Fn sin a; ð4Þ

where x is the rotational velocity of the sphere and Ft and Fr are hydrodynamic resistance
functions (Goldman et al., 1967):

Fig. 1. Coordinate system and sketch of a sphere contacting an artificially roughened inclined plane.
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bFFt � � 8
15
ln n þ 0:9588; ð5Þ

bFFr � 2
15
ln n þ 0:2526; ð6Þ

where n ¼ d=a � 1 is the dimensionless separation between nominal surface of the plane and the
sphere. For simplicity, we neglect any sideways motions by assuming that the large bump on the
plane is aligned with equator of the sphere. Finally, the torque balance about the center of
the sphere is

aFf ¼ 8pla2ðubTTt þ axbTTrÞ; ð7Þ
where the remaining hydrodynamic resistance functions for a sphere near a plane are (Goldman
et al., 1967)

bTTt � 1
10
ln n þ 0:1895; ð8Þ

bTTr � �2
5
ln n þ 0:3817; ð9Þ

valid for n � 1.
Following earlier work (Smart et al., 1993), we define U ¼ 6plau= W sin hð Þ and X ¼

6pla2x=ðW sin hÞ as dimensionless translational and rotational velocities, respectively. For rolling
without slipping, U ¼ X, and then eliminating Ff and Fn from (3), (4) and (7) yields

X ¼ U ¼ cos a þ sin a cot h

ðbFFt þ bFFrÞ cos a þ 4
3
ðbTTt þ bTTrÞ þ ðsin a tan aÞ=n

: ð10Þ

This result is subject to Ff < lfFn, where lf is the coefficient of friction, or

cot h >
1þ lf tan a � U ½ð1þ lf tan aÞðbFFt þ bFFrÞ � ðlf � tan aÞðtan aÞ=n	

lf � tan a
: ð11Þ

When (11) is not satisfied, then the contact friction force is equal to its maximum value, Ff ¼ lfFn,
and slipping will occur. Assuming that the coefficients of rolling and slipping friction are the same,
then (3), (4) and (7) yield

U ¼
cos a þ lf sin a � 3

4
lf
bFFr=bTTr þ lf cos a � sin a

� �
cot h

ðbFFt � bTTt
bFFr=bTTrÞðcos a þ lf sin aÞ � 3

4
lf
bFFr=bTTr þ lf cos a � sin a

� �
ðtan aÞ=n

; ð12Þ

X ¼
3
4
lf cot h � U bTTtðcos a þ lf sin aÞ þ 3

4
lfðtan aÞ=n

h i
bTTrðcos a þ lf sin aÞ

: ð13Þ

2.2. Descending motion without contact

We assume that there is no adhesion between the plane and the sphere, so that Fn P 0. Then,
loss of contact between the large bump and plane occurs when Fn ¼ 0. From (3), contact is first
lost when

n ¼ n1 ¼ U tan a= cot h: ð14Þ
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After contact ends, the sphere settles toward the plane without contact until the small asperities
(or a second large asperity) are encountered. Assuming that the microscopic roughness does not
affect the sphere–plane hydrodynamic interaction (Smart and Leighton, 1989), then the tangential
and normal motions of the sphere are (Galvin et al., 2001):

dX=dT
sin h

¼ U ¼ �XbTTr=bTTt ¼
1

ðFt � bFFr
bTTt=bTTrÞ

; ð15Þ

dn=dT ¼ �n cos h; ð16Þ

where T ¼ Wt=ð6pla2Þ is the dimensionless time and X ¼ x=a is the dimensionless distance. Di-
viding (16) by (15) and integrating subject to n ¼ n1 from (14) at X ¼ X1 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnL � n1Þ

p
from (1)

yields an implicit relationship for nðX Þ:

ðX � X1Þ cot h ¼ 1:656 ln
ln n � 2:574

ln n1 � 2:574

� 	
þ 0:3438 ln

ln n � 0:6160

ln n1 � 0:6160

� 	
: ð17Þ

2.3. Motion during contact with small asperities

The sphere will make contact with the small asperities when d ¼ dS, provided that a second
large asperity is not encountered first (see the next subsection). Following previous analyses
(Smart et al., 1993; Galvin et al., 2001), we assume that the surface coverage of the small asperities
on the plane (or sphere) is sufficiently high to support the sphere at constant separation (d ¼ dS),
but not so high that the hydrodynamic forces are significantly affected by surface roughness. In
this case, the force and torque balances on the sphere yield (Smart et al., 1993):

X ¼ U ¼ 1 bFFt

h.
þ bFFr þ 4

3
ðbTTt þ bTTrÞ

i
ð18Þ

for rolling without slipping (lfFn > Ff ), or

U ¼
1� lf cot h 1þ 3

4
bFFr=bTTr

h i
½bFFt � bTTt

bFFr=bTTr	
; ð19Þ

X ¼
1� lf cot h 1þ 3

4
bFFt=bTTt

h i
½bFFr � bTTr

bFFt=bTTt	
; ð20Þ

for rolling with slipping, where the hydrodynamic resistance functions are evaluated at n ¼ nS ¼
dS=a. Eq. (18) applies when

cot h >
4
3
ðbTTt þ bTTrÞ

lf
bFFt þ bFFr þ 4

3
ðbTTr þ bTTtÞ

h i : ð21Þ

Note that the above results follow from those in Section 2.2 with a ¼ 0: Also, the analysis is the
same if the small bumps are on the sphere rather than the plane (Smart et al., 1993; Galvin et al.,
2001).
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2.4. Ascending motion in contact with a large asperity

A second large asperity will be encountered when the following geometric conditions are met:

n ¼ nL þ cos b � 1; XL � X ¼ sin b; ð22Þ

where XL ¼ L=a and b is the angle between the upward normal form the plane and the line from
the sphere center to the contact point with the second large bump (see Fig. 1). Depending on the
system parameters, contact with a second large asperity may occur with or without prior contact
with the small asperities. Indeed, if

XL < 2½1� ð1� ðnL � nSÞÞ2	1=2 
 ½8ðnL � nSÞ	1=2; ð23Þ

then contact with the small asperities is not geometrically possible.
Once the sphere makes contact with the second large asperity, it will be lifted away from the

plane in a �pole-vault� fashion. The analysis of Section 2.1 still holds, except that a is replaced by
�b. Note that the lubrication force from (2) is now negative, as a suction pressure develops to
draw fluid into the increasing gap as the sphere ascends from the plane. The negative lubrication
force in the normal force balance (3) causes a greater normal contact force, which, in turn, implies
greater friction and less slip.

3. Experimental materials and methods

The experimental apparatus consists of a plexiglass tank with a cross section of 10 in:� 6 in:
and a height of 6 in. (see Fig. 2), which is filled with a Newtonian fluid consisting of a mixture of
97.4% polyalklene glycol and 2.6% tetrabromoethane by weight. The temperature dependence of
the fluid kinematic viscosity is represented by the equation m ¼ 1209 expð�0:0547T0Þ, where m has
units of cm2/s and the temperature T0 is expressed in �C. The fluid density is q ¼ 1:118 g/cm3 at
T0 ¼ 4 �C and q ¼ 1:111 g/cm3 at T ¼ 25 �C.

Several tungsten metal cleaning wires (Hamilton Co.) with a diameter of dL ¼ 0:003 or 0.005 in.
(0.0076 or 0.0127 cm) are set parallel to each other and attached on the bottom surface of the tank
to serve as the artificial roughness of the plane. The separation between two adjacent wires is set at
L ¼ 0:125 or 0.25 in. (0.318 or 0.635 cm). The motion of the sphere is recorded with a digital
camcorder (Canon ELURA), a Digital Origin 1394 card, and a personal computer (HP 9694C).

Fig. 2. Schematic of the experimental setup.
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Teflon (q1 ¼ 2:154 g/cm3) spheres with radius a ¼ 0:125 in. (0.318 cm) are employed in the
experiments. All spheres were purchased from Small Parts, Inc. They were marked with ink dots
to show their rotational motions. Scanning electron micrographs of the sphere surfaces show
roughness elements of about 10 lm (Galvin et al., 2001). The dry coefficients of static and sliding
friction between the teflon sphere and the acrylic plane were measured as 0:19� 0:02 and
0:12� 0:01, respectively (Galvin et al., 2001). The coefficient of sliding friction between teflon and
metal is approximately 0.1 (Elias, 1992), similar to that between teflon and acrylic.

In the experiments, a teflon sphere is introduced into the tank and allowed to sediment onto the
horizontal bottom of the tank. After standing for 1–2 min to assure full contact between the
sphere and the bottom plane of the tank, the apparatus is inclined so that the sphere moves down
the plane perpendicular to the wires. Its motion is recorded by the digital camcorder and then
transferred into the computer. Scion Image software (NIH Image) is used to analyze the image
files to determine the translational and rotational velocities of the sphere. To measure the normal
separation between the sphere and the plane, the method developed by Galvin et al. (2001) is
employed. When the sphere reaches a certain position between two adjacent metal wires, the
whole apparatus is inverted to make the bottom of tank horizontal and facing down. Under the
action of gravity and resisted by lubrication forces, the sphere slowly falls from the its initial
position. The fall process (at least two sphere diameters in vertical direction) is recorded by the
digital camcorder. According to the analysis of Smart and Leighton (1989), the dimensionless
initial separation is given by

n ¼ 2 exp 2

�
� td
td � ta

ð1þ ln 2Þ
	
; ð24Þ

where td and ta are the times for the sphere to fall one diameter and one radius from its initial
position, respectively.

4. Results and discussion

The theory and experiments described above yield predictions for the dimensionless nominal
separation (n), translational velocity (U), and rotational velocity (X) as functions of dimensionless
time (T) or distance (X) traveled down the inclined plane. The results depend on five dimensionless
parameters (nS; nL;XL; lf ; h). Fortunately, all of these parameters may be set or measured inde-
pendently. In particular, for the current experiments, nL ¼ 0:024 or 0.040 is set by the sizes of the
wires and teflon ball, XL ¼ 1:0 or 2.0 is set by the spacing of the wires, h ¼ 30�, 50� or 70� is set by
varying the angle of inclination of the plane, and lf ¼ 0:15 is the average coefficient of friction
measured for a teflon ball rolling or sliding down an inclined acrylic surface under dry conditions
(Galvin et al., 2001). The same value of lf was typically used when the sphere contacted the metal
wires, and the results were found to depend only weakly on the value(s) chosen for lf . Finally,
nS ¼ 0:0016 (dS ¼ 5:1 lm) was determined by allowing the teflon sphere to sediment onto a
horizontal acrylic surface (without wires) and then inverting the surface and timing the sphere as it
fell away from the surface.

Fig. 3 shows the dimensionless distance X and the angle / versus the adjusted dimensionless
time T sin h, starting from the point that the sphere contacts the plane right on the top of a large
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asperity, for h ¼ 50�, XL ¼ 2, and nL ¼ 0:024. Varying the friction coefficient over the range
0:16 lf 6 0:2 has little effect on the translational velocity and only a modest effect on the rota-
tional velocity. The arrows 1, 2 and 3 in this and subsequent figures correspond to when the
sphere loses contact with the first large bump, when the sphere contacts the small bumps, and
when the sphere meets the second large bump, respectively. Loss of contact with the first large
bump occurs very quickly, and then the translational velocity decreases weakly while the rota-
tional velocity is nearly constant as the sphere descends toward the plane without contact. When
the small bumps are encountered, the translational velocity decreases further, while the rotational
velocity increases, because of the solid–solid friction force. Finally, when the second large bump is
encountered, the translational velocity is further reduced as lubrication suction resists the lifting
of the sphere over the bump. These features are illustrated further in Fig. 4, which shows the
dimensionless translational and rotational velocities for the same conditions. Until contact with
the second large bump occurs, the dimensionless translational velocity is much greater than the
dimensionless rotational velocity, indicating that slipping occurs. When the second large bump is
first encountered, the dimensionless translational and rotational velocities coincide, because the
large normal contact force to balance both gravity and lubrication suction allows for a large
friction force which prevents slipping until the apex is nearly reached. Figs. 3 and 4 show very
good agreement between theory and experiment, even though the long wires are expected to
modify the hydrodynamic interactions between the sphere and the plane in the vicinity of a large
bump. The open and closed symbols show good reproducibility between repeated experiments.

Fig. 5 presents the dimensionless separation n between the sphere and plane and the angle
rotated / versus the dimensionless distance traveled X, for the same conditions as in Fig. 3 except

Fig. 3. Dimensionless distance X (solid lines for theory and triangles for experiments) and angle / (dashed lines for

theory and circles for experiments) versus the dimensionless time T sin h for h ¼ 50�, nL ¼ 0:024, ns ¼ 0:0016, and
XL ¼ 2. From top to bottom, the coefficients of friction used in the theoretical calculations are lf ¼ 0:2, 0.15 and 0.1.

The arrows 1, 2 and 3 indicate when the sphere loses contact with the first large bump, when the sphere then makes

contact via the small bumps, and when the sphere makes contact with the second large bump, respectively.
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Fig. 4. Dimensionless translational velocity U (solid lines for theory and triangles for experiments) and rotational

velocity X (dashed lines for theory and circles for experiments) versus the dimensionless distance X for the conditions of

Fig. 3 with lf ¼ 0:15 used in the theory. The arrows 1, 2 and 3 indicate when the sphere loses contact with the first large

bump, when the sphere then makes contact via the small bumps, and when the sphere makes contact with the second

large bump, respectively.

Fig. 5. Dimensionless separation n (dashed lines for theory and open symbols for experiments) and angle / (solid lines

for theory and solid symbols for experiments) versus the dimensionless distance X, for the conditions of Fig. 4 but with

h ¼ 30� (circles), 50� (squares), and 70� (diamonds). The arrows 1, 2 and 3 indicate when the sphere loses contact

with the first large bump, when the sphere then makes contact via the small bumps, and when the sphere makes contact

with the second large bump, respectively.
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that the angles of inclination are h ¼ 30�, 50� and 70�. The dimensionless separation n decreases
gradually during the period of no contact, with the motion normal to the plane resisted by lu-
brication, and is then nearly constant during the period of contact with the small asperities. Fi-
nally, the contact with a second large asperity provides a rapid increase in the dimensionless
separation. With increasing angle of inclination of the plane from horizontal, the motion of the
sphere toward the plane during the period of no contact becomes slower, due to the smaller
normal component of gravity, and contact with the small bumps on the plane is not made for the
largest angle investigated (h ¼ 70�) before a second large bump is encountered. As noted pre-
viously, the rate of rotation of the sphere relative to its translation increases when the small bumps
are encountered and then again when the second large bump is reached. Also, the relative amount
of rotation of the sphere is greater at smaller angles, because the larger component of the gravity
vector normal to the plane gives rise to higher friction during contact with the small bumps and,
hence, more rotation and less slip. Fig. 6, which shows the dimensionless distance traveled and
angle rotated versus time (with sin h included to account for the change in the tangential com-
ponent of gravity with angle) for h ¼ 30� and 70�, further illustrates that more slip (less rotation
and more translation) occurs when the steepness of the plane is increased.

Figs. 7 and 8 show results for h ¼ 50� when two adjacent wires are close together (XL ¼
L=a ¼ 1) and have a dimensionless roughness height of nL ¼ 0:024 or 0.040. Unlike the previous
cases where XL ¼ 2, the second large asperity is encountered before the sphere settles to a nominal
separation equal to the height of the small asperities, which makes the average separation between
the sphere and the plane closer to the size of the large asperities. Of course, the sphere–plane
separation is then greater during the entire encounter when the larger wires are used to lift the

Fig. 6. Dimensionless distance X (solid lines for theory and triangles for experiments) and angle / (dashed lines for

theory and circles and diamonds for experiments) versus the dimensionless time T sin h for nL ¼ 0:024, ns ¼ 0:0016,
XL ¼ 2, lf ¼ 0:15 and h ¼ 30� (top for / and bottom for X) and 70�. The arrows 1, 2 and 3 indicate when the sphere

loses contact with the first large bump, when the sphere then makes contact via the small bumps, and when the sphere

makes contact with the second large bump, respectively.
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sphere further from the plane, but the translational and rotational velocities of the sphere are only
weakly affected by this difference.

Fig. 7. Dimensionless separation n (dashed lines for theory and open symbols for experiments) and angle / (solid lines

for theory and solid symbols for experiments) versus the dimensionless distance X, for h ¼ 50�, nS ¼ 0:0016, XL ¼ 1,

lf ¼ 0:15, and nL ¼ 0:040 (circles) and 0.024 (diamonds). The arrows 1 and 3 indicate when the sphere loses contact

with the first large bump and makes contact with the second large bump, respectively; contact with the small bumps

does not occur in this case.

Fig. 8. Dimensionless distance X (solid lines for theory and solid symbols for experiments) and angle / (dashed lines

for theory and open symbols for experiments) versus the dimensionless time T sin h, for the conditions of Fig. 7 with

nL ¼ 0:024 (diamonds, upper line for / and lower line for X) and 0.040 (circles, lower line for / and upper line for X).

The arrows 1 and 3 indicate when the sphere loses contact with the first large bump and makes contact with the second

large bump, respectively; contact with the small bumps does not occur in this case.
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5. Conclusions

Both theory and experiment show that a sphere experiences a time-varying motion down an
inclined plane with multiple roughness scales in a viscous fluid. The contact of the sphere with the
plane transitions from large bumps to small bumps, with a period of contact-free motion in
between. Because of solid–solid friction, the translational velocity of the sphere decreases when
contact is made, whereas the rotational velocity generally increases. Moreover, as the angle of
inclination of the plane is increased, the normal component of gravity is decreased and the sphere
does not settle back onto the plane to make contact with small roughness elements in between the
interactions with large roughness elements which cause the sphere to rise away from the nominal
surface of the plane in a pole-vault-like fashion. These findings are expected to have implications
in suspension rheology and microstructure through particle-surface and particle-particle contacts
due to microscopic surface roughness.
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